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,..p g Abstract

In this paper, the major properties and previous models of multistable perception are

briefly reviewed. A neural network model based on Hebbian synaptic modification (the

" brain-state-in-a.box model of Anderson and colleagues) is shown to satisfactorily account

for a number of these properties. We present evidence demonstrating the importance of

both the stimulus and the history (both recent and distant) of the system to disambiguate

ambiguous stimuli. In addition, some simple extensions are made to allow the dynamic

modification of synaptic connectivities during the course of the stimulus presentation. This

enables such properties as the time course of reversals, adaptation, and hysteresis to be

simulated.

1

'4

5%

.5

a.
• 5- 1 " - " " ' " . . . . . " " . . . " " " " ' . % " . . " ' " i ' . - 1 " .



Multistable perception 1 Kawamoto and Anderson

A Neural Network Model of Multistable Perception

"The mind cannot fix long on one invariable idea."

John Locke

Introduction

Ever since Necker's report of an observation "which occurs on viewing a figure of a

crystal or geometrical solid" a century and a half ago (Necker 1832), figures and drawings

which can be perceived in two or more stable configurations have held a curious fascination

for numerous people investigating form perception. During this time, a wide variety of

stimuli displaying multistability and factors influencing their organization have been

reported.

Although there have been numerous reports describing new multistable stimuli,

theoretical treatments of this phenomenon have been few (Price 1969). Of the existing

approaches. the most widely accepted neural basis is the "satiation hypothesis" proposed

" •by Koehler and Wallach (1944). In the present study, a mathematical model based on

Hebbian synaptic modification in a neural network (Anderson, Silverstein, Ritz, and Jones

1977) is used to explore properties of multistable perception.

Before examining the details of the implementation, a brief description of the various

types and major properties of visual stimuli which are multistable will be given. This will

be followed by a brief review of models which have been previously developed to account

for multistable perception. Next, an outline of the neural model will be described and a

few simple extensions will be introduced. Then. properties of multistable stimuli wil be

described in some detail and the manner in which the model explains them will be

demonstrated.
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Multistable Visual Stimuli

In this review, mulistable stimuli will be defined as those visual stimuli which can be

perceived in one of two possible configurations and whose perceived organization can,

without any physical change of the stimulus, change from one stable configuration to

another. We shall restrict our attention to perceptual changes which are not due to

"suppression" of parts of a stimulus, but to a global organizational change.

The majority of visual stimuli displaying multistability can be grouped into one of four

classes. These are (1) reversible perspective figures, (2) ambiguous figures, (3) figure-

ground reversal figures, and (4) gestalt stimuli. Reversible perspective figures include the

, . Necker cube. Mach book, Schroeder staircase, and the Lissajous curve. Examples of

ambiguous figures are Boring's wife/mother-in-law. Jastrow's duck/rabbit, and Rock's

dog/chef. Rubin's face/vase and Escher's "Devils or Angels" are examples of figure-ground

reversal figures. An example of gestalt organization, many of which were introduced by

Wertheimer (1938), is illustrated below.

4 * S * S *

* * S * * S *

e, Specifically excluded from consideration here will be apparent luminance changes of

the stimulus as these do not lead to changes in the perceived configuration. Also excluded

are those stimuli composed of parts which are all physically present but selectively

I' suppressed such as retinally stabilized images (Pritchard, Heron, and Hebb 1960: Riggs et

al. 1953), rivalrous binocular stimuli, and ambiguous random dot stereograms Julesz
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'S 1971). However. we will briefly discuss at the end of this paper, the change in the

* perceptual organization due to changes in the context of a stimulus. An example would be

homographs such as "bat" in nocturnal bat and wooden bat. In this example, the context

disamnbiguates the stimulus.

With the scope of our study focussed on one class of ambiguous stimuli, let us examine

some of the major experimental properties this class of stimuli shows.

(1) There must be two or more possible configurations of the stimulus.

(2) Once a particular configuration is perceived, it remains stable for a period of time

before spontaneously changing to the alternative configuration.

(3) The relative amount of time the two different configurations are perceived is a direct

function of the probability that a given configuration will be perceived initially (Price

1967b; Sadler and Mefferd 1970).

(4) The rate of fluctuation increases during the first 3 minutes of viewing before

reaching an asymptote (Brown 1955; Cohen 1959).

(5) After adaptation to an unambiguous stimulus, an ambiguous stimulus is more likely

to be perceived in the alternative configuration (Howard 1961; Virsu 1975).

(6) When viewing a set of stimuli ranging from one unambiguous configuration to

.4 another sequentially, hysteresis is observed. That is, the first configuration is

maintained beyond where it would have normally ceased to have been evoked

(Attneave 1971).
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Previous Models

Perhaps the most generally accepted model for these phenomena is the neurally based

satiation model first proposed by Koehler and his colleagues (Koehler 1940; Koehler and

Wallach, 1944). Spitz (1963), Orbach, Ehrlich, and Heath (1963), and Howard (1961)

have also developed models similar to the original "satiation" theory. Based on a

mechanism to account for figural after-effects, Koehler and Wallach (1944) proposed,

According to the first hypothesis a specific figure process occurs whenever a
figure appears in the visual field. And this process tends to block its own
way if the figure remains for some time in the same location. The second
hypothesis states that in reversible figures, the figure-ground relationship
will suddenly be reversed when the figure process has altered the medium
beyond a critical degree.

-i An early paper published by McDougall (1906) is close in spirit to our approach.

McDougall claimed that "reversible perspective is a special case of a general psychic

characteristic, viz, the rapid fatiguability manifested in all the higher levels of

consciousness, due to rapid changes in synaptic resistance." Similarly, Howard (1961)

regarded satiation as an "auto-inhibitory process occurring at specific synapses in the

central nervous system as a result of activity set up there by specific sensory events."

During the past decade, several investigators have presented models based on decision

processes in the perceptual system. Vickers (1972) proposed that the initial percept is

mediated by an "optional stopping decision process" and that the reversals might be

9 accounted for by supposing that the decision process was cyclic. This model is based on an

observer inspecting a distribution of signal differences (rather than the two original

representations) until some criterion is reached. Taylor and Aldridge (1974) proposed a

random-walk mode! based on a "finite majority decision dev-ice with memnory" related to

Selfridge's Pandemonium model (Selfridge 1959). In this version. each "demon" or "cell"

selects one of the two possible configurations but can switch decisions instantaneously.

a2.



7; :

Multistable perception 5 Kawamoto and Anderson

Theoretical Development

Over the past fourteen years one of us (J.A.) has been developing a neural network

model based on Hebbian synaptic modification (Anderson 1968; Anderson 1972; Anderson,

Silverstein, Ritz, and Jones 1977). Similar approaches have been discussed by Cooper

(1974) and Kohonen (1977).

In this section, this approach will be briefly reviewed. First, a brief account of the

neurophysiological inspiration and basis will be sketched and the associative memory

scheme will be described. Next, the "brain-state-in-a-box" model incorporating non-linear

saturating properties of the neural network will be examined. Finally, some simple

extensions of the brain-state-in-a-box model will be presented. In the present study, the

S formalisms and notation in Anderson et al. (1977) will be used.

Associative model.

*4" Two striking properties of cortical organization are its anatomical parallelism and the

large degree of interconnection between neurons. Functionally, this results in a highly

interconnected, parallel system spatially distributed over a large extent. A neuron is an

element in this system and behaves as an analog integrating device.

We assume that

(a) nervous system activity is usef iilly represented as the set of
simultaneous individual neuron activities in a group of neurons; (b) different
memory traces make use of the same synapses; and (c) synapses associate
two patterns of neural activity by incrementing synaptic connectivity
proportionally to the product of pre- and postsynaptic activity, forming a
matrix of connectivities (Anderson et al. 1977. p. 413).

Based on these assumptions, the association of an input vector tstimulus) with an output

vector fresponsei can be modeled as a linear system.

. . . -" "
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As depicted in fig. 1. a system consisting of two sets. alpha and beta. of N neurons.

can be constructed.

insert fig. 1 about here

..- °. - - . . . . .

In this figure each of the N neurons in the set alpha synapses on each neuron in beta.
'.

Corresponding to each synaptic junction is a synaptic strength, aij, coupling the jth neuron

in alpha with the ith neuron in beta. Assuming linear integration, the activity of the ith

neuron in beta is given as

That is, a given beta cell's firing rate is simply the weighted sum of all the inputs from

alpha.

By making a further assumption, that the input vectors, f, are orthonormal, it is easy

'to demonstrate that an output pattern, g, can be associated with its corresponding input

pattern. We assume: (1) the dot product of any input vector with itself is 1 (normality),

and (2) the dot product of any input vector with any other input vector is 0 (orthogonality).

That is,

TL!L.'. :. ,I . .

where T is the transpose operation. Furthermore, since the dot product of a vector with

itself is defined a the length of the vecto:, each input vector has unit length. with length

defined as

%(*

.,". . . .. .: . - -...- . . . . .,, . v - .
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If the synaptic weights are assumed to be zero initially, it can be shown that the final

values after learning are a function only of the inputs, fk' their associated outputs, gk" and

ta their frequency of presentation. Pk" For this synaptic learning (modification) we postulate

that to associate pattern fl in alpha with g, in beta, we need to change the set of synaptic

weights according to the product of presynaptic activity at a junction with the activity of

the postsynaptic cell.

These connections can be formally described as a matrix Ak, with

ak.

In this matrix, each element in the mth row corresponds to the synaptic weight between

the mth cell in beta with each of the N cells in alpha. Similarly, each element in the nth

column of the matrix represents the synaptic weight between the nth cell in alpha with

each of the N cells in beta.

If we regard the matrix A as a linear operator operating on the input f1 . the response

is given as
T

Thus, an input f, results in the desired output, gl.

Suppose now, that in addition to associating f, and gl, K such pairs (flgl), (f2 ,g2 ).

(fK,gK) are associated. We now have, after superimposing the effect of each pair of

* associations on the synaptic junctions. thF- set of connections given as

t
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Even after learning K associations, inputting any of the original input vectors will

yield the correct output response if K is less than N because of the orthogonality

assumption. For example, we apply our new operator, A, to one of the original input

vectors, fi, to get

,*. c (i .

Without any noise, the association is perfect. On the other hand, if the input vectors are

not orthogonal, the system will make "mistakes" (Anderson 1977) which are often much

more interesting than the perfect association because properties such as abstraction and

generalization can be demonstrated (Anderson 1983; Knapp and Anderson 1984).

Brain-state-in-a-box

An extension of this model constructs an associative system which couples a set of

.4 neurons, alpha, to itself rather than to a second set. This network is sketched in fig. 2

above. Assuming that every neuron projects to every other neuron, the synaptic weights

," of these feedback connections can again be defined as the matrix A.

° .. o.. . . . . ... ... .. . ..

insert fig. 2 about here

.. ... o .. ..°o .. .. .

Under these conditions, an input pattern f is coupled to itself. Since the change in the

strength of the synapse aij is proportional to the product of the activity of the ith neuron,

f(i), and the jth neuron, f(j),

JL

.I:'

" . •".-.-,,:,. ..,-', ..-.-... - -.--. ,, ..,.- . ." ....',-'.'.' .'-.-_.. *-- - , ""-,4 ,-"* .'*" ,' -"-" ,
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If all the synaptic weights are initially zero and their changes are determined by the above

scheme, A is a symmetric matrix.

This property of A implies the existence of N mutually orthogonal vectors e l ... , e

such that

where each lan i is a real number. The vectors e1, ..., eN are called eigenvectors of A, and

the scalars lam1, ..., lamN  are the eigenvalues associated with the corresponding

eigenvectors. Since the N eigenvectors are mutually orthogonal, they form a basis set and

every N-dimensional vector is a linear combination of the eigenvectors. Consequently, A is

completely determined by the set of its eigenvectors and corresponding eigenvalues.
:-'

*If, as previously assumed, all the synaptic strengths are initially zero, A is determined

by its previous inputs. Assuming that K, KEN, orthonormal inputs are presented pj

times, j = 1,..., K, to the system, the synaptic weights are given as

Y\ .:. ),

*In this paper, the set of synaptic connectivities defined by

ST

will be defined as the trace corresponding to the eigenvector f.

In the earlier implementation of this feedback model. it was assumed that the

dynamics of the system occur in discrete time. Letting x(t) denote the state vector at a

given time t. the succeeding state. x(t + 1I, is defined as the sum of the activity at time t

and the result of the feedback matrix acting on the pattern of activity at time t. That is,

*ix t k aqa5 -,t-4 S44~ . - .. -. .
--m*a . a -4-

- 4
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Since all the eigenvalues of A are non-negative. the system is a positive feedback

system and the activity is nondecreasing with time. To ensure that the activity does not

grow indefinitely large, a nonlinearity (based on the fact that individual cells are limited in

their dynamic range) was introduced to contain the activity of the system. This feature

can be formalized by assuming that the activity of the system is contained within an N-

dimensional hypercube defined by x i = ±C. i = 1.....N, where xi is the activity of the ith

neuron and C is a constant equal to 1. In this system, the vertices or corners are of

primary interest. If an eigenvector lies along the diagonal of the hypercube, then both of

the corresponding corners will be stable.

Extension

An important limitation of the model is that no mechanism is provided to get the brain

state out of the corner it has gotten into. To remedy this we suggest next some

assumptions about how brain state vectors might grow and decay. These suggestions will

be used in modeling some of the phenomena of multistable perception which cannot be

dealt with by earlier versions of the brain-state-in-a-box model.

Iterative scheme. Let us begin by examining the iterative scheme proposed to describe

successive patterns of neural activity

Presentation of the stimulus results in a pattern of activity, xstim. The input stimulus is

- not removed. This pattern of activity can be decomposed and expressed as the linear

combination of the eigenvectors of A. In particular. we shall restrict the allowable stimuli

to the plane defined by two eigenvectors. fA and fB" That is.

: '..--.".... - - - ...-. .. . . .- -. . ... : .. ,.. ... .....-... ...-.- , ... . . -... . . .. .. . ... - ,- -- .
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Alpha and beta are chosen such that x is normal.

The scale factor. sigma. has been introduced to compensate for the magnitude of x(t)

relative to the input vector, Xstim* Due to the geometry of an N-dimensional hypercube,

the magnitude of a vector at one of the corners is proportional to the square root of N.

Thus, without any scaling, the contribution of the positive feedback process (i.e. x(t)) can

predominate over the input when x(t) is at or near a corner. By scaling the effect of the

previous state, x(t), the contributions of the input and the positive feedback become

comparable. One important consequence of this scale factor is that the activity of the

system does not increase without bound for certain eigenvalues and can even decay to the

resting level upon removal of the input.

Initial configuration. A set of initial conditions, x(O) and A(0), is required to begin the

iteration. Under most conditions, the initial activity pattern, x(O), will be the zero vector

(the resting level) and the initial set of synaptic weights will be the determined by the long-

term eigenvalues, lammax, of the eigenvectors of A. These long-term values represent a

stable component of the strength of the trace. We assume that the time constant for the

modification of this value is slow relative to the dynamic modifications introduced later in

this section. Changes in A will not be allowed until the activity of the system reaches a

corner. This approximation assumes that since the time spent in corners is generally

longer than the time getting there we can neglect transit time. If this assumption is not

made, analysis becomes very difficult.

The first few activity patterns are thus

0

-tTY,*

~J1* N%+

'S ( t

N d e '-%
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By induction,

Note that the value of x(n) as n becomes large depends on the sum (sigma+ lam). If

(sigma-+lam) is greater than 1, the component of the corresponding eigenvector grows

indefinitely large. If (sigma+lam) is equal to 1, the component is simply (n-i). However,

if (sigma+lam) is less than 1, the component approaches 1 / (1 - (sigma-lam:'). In other

words, it is bounded.

In cases where the components of fand B are not bounded, as well as some cases

where they are, the activity of certain cells in the network might increase beyond their

physiological limits. To avoid this situation, we must determine the point where the

system reaches a "wall" of the "box," thus limiting the activity of the network. By

examining a 2-dimensional system, the linear properties of the network can be studied

more closely.

Let the components of the activity vector, x(t), be expressed in terms of the

eigenvectors of A, fA and fB" Until the state reaches an edge of the box, the components

of the activity expressed in terms of the eigenvectors of A are simply

L +C

The difference between the components .of fA and 1B of two successive states are

I
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If the step size is small, the assumption of continuous time can be made and expressions

for alpha(t) and beta(t) can be found1

~cx n (r TA '-Aj -A , A )

This pair of parametric expressions define a curve in the fA-fB plane. In the

2-dimensional system, the edge of the box is reached when the sum of the components of

fA and fB equal 1,

Once this point is reached, subsequent activity is confined to the edge of the box.

Furthermore, for a given lamA and lamB, a family of curves is generated by different
values of alpha and beta (components of xstim). One member of this family of curves

generates two regions separating those stimuli which end in corner A from those ending in

corner B. This parametric curve intersects the edge of the box perpendicularly. Since

alpha'(t) and beta'(t) are equal at this point, the activity of the system cannot change and

the system will not satiate.

Synaptic modification. Once the activity of the network reaches a corner, the4.:.

". eigenvalues become subject to modification and remain subject to modification as long as

the activity remains in a corner. A change in the value of an eigenvalue results in a

change in the strength of the trace (f T) associated with the corresponding eigenvector and

thus affects each synapse.

If the state vector is in a particular corner, say f. the strength of the trace

corresponding to that particular state will decrease. That is. the eigenvalue lamA will

.54
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decrease by a fraction of its current value. This property can be formally expressed as

-) Q -- -S A (- 1 0< 4- K < I

where delta is the decay constant. The change in the eigenvalue is given by the following

difference equation

- (t - )(t) - ) --'A

By assuming that the change in lambda is continuous, the following relation is obtained,

Solving this first order differential equation, lam(t) can be expressed simply as

where lam(O) is the value of the eigenvalue at time t-0. The eigenvalue will decay until

some minimum value is reached. Arguments for the existence of a minimum are

presented in Appendix A.

While the eigenvalue associated with the corner the state vector is in decreases, other

eigenvalues increase by a fraction of the difference between their long-term values and

their current values. This recovery can be formally expressed as

where rho is the recovery constant and lammax is the lone-term value of the eigenvalue.

Again. the change can be expressed as a difference equation.

t
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Assuming continuous time, the first order differential equation can be solved to obtain the

following expression for the eigenvalue during the recovery phase,

With these relationships governing the decay and recovery of the eigenvalues. the

values of lanA and lamB as a function of time can be plotted. Consider the case when

both lamA and lamB are initially lama m ax and lamBm a x . By the iterative scheme

detailed previously, the state vector will reach either corner A or corner B (i.e. the state

vector will be fA or fB' respectively).

In the example illustrated in fig. 3 below, it is assumed that the state vector reaches

corner A first. Thus, lamA will decrease and lamB will remain fixed since it is already at

its maximum. After a certain period, tau,, the activity is no longer in a corner as laiA

reaches its minimum. Both eigenvalues remain fixed until the system reaches corner B.

(Note that once out of a corner, the state vector cannot return to it without an increase of

the eigenvalue associated with that corner.) Once corner B is reached, lamB decays and

lanA recovers. After decaying for a period tau 2, the state is no longer in corner B as

lamB is now at its minimum. At this point, lamA no longer increases. This value of lainA

will be one of its "initiation values" as it will be the initial value of lamA when the state

vector again reaches corner A. Note that this first initiation value must be less than

lanamax.

-.. 0......o....- .......

insert fig. 3 about here

..



D%4

Multistable perception 16 Kawamoto and Anderson

SThis cycle of decay and recovery of lamA will continue. Because the initial value of

lanA is smaller than that of the previous cycle. tau3 . the time it takes lanA to reach its

minimum, will be less than tau1 . At this point, the value of lamB will be less than
lamBmax. Thus, tau4 , the length of time before lamB reaches its minimum for the second

time, is less than tau 2 . Since the time allowed for lamA to recover is now shorter than the

previous recovery phase, the initiation value will also be smaller than the previous one.

Consequently, initiation values of both lamA and lamB are strictly decreasing.

To demonstrate that the initiation values approach a limit, it is sufficient to

demonstrate that these values are nonincreasing and have a lower bound. It has been

shown above that the initiation values are strictly decreasing. Since each eigenvalue must

be larger than its minimum, a lower bound exists for lanA and lamB. Therefore.

asymptotic values for the initiation values of both lamA and lamB exist.

Furthermore, it can be shown that the limits are not the minimum values of lam&

and lamB. (The system would be uninteresting if this were the case.) This will be

demonstrated by the following argument. Allow both eigenvalues to decay to their

respective minima and then allow both of them to recover. The eigenvalues are plotted as

a function of time and the lamB curve translated so that both minima are vertically

'. aligned as illustrated in fig. 4a. As seen in fig. 4b, the recovery phases are reflected about

a vertical line intersecting the eigenvalue minima.

insert fig. 4 about here

o . .... ...... ... ....

Consider the case examined previously where the starting values of lamA and lamB

were their maximum values (points 0 and 0' in fig. 4bi and the first corner reached was A.
4.
4,

%°-
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While lamA is decaying, there is no change in lamB. Since the period of recovery and

decay are the same during a given phase, a vertical line through point 0' on the decay

curve of lamB will intersect the recovery curve of lamA at point 1. By drawing a

horizontal line from this point on the recovery curve of lamA to intersect its decay curve at

point 2, the starting point for the modification of lamA when the system is again in corner

A can be found. This cycle is repeated with lamB. If these vertical and horizontal

segments are plotted as illustrated in fig. 5c, it can be seen that a limiting path is

approached. This path is bounded by the intersections of the decay and recovery curves

"" for lamA and lamB.

A number of other points can be made. First, the same path (horizontal and vertical

segments) will be followed if the initial corner was again A, but the initial value of lamA

was less than lamAm a x . Second, the state when both eigenvalues are at their respective

minima must also be considered. At this point, the system is in unstable equilibrium. It is

at equilibrium because the system will remain at this point if it is not perturbed. It is

unstable, however, because slight perturbations will drive the system away from this point

and toward the same limiting path described above.

It should be noted that not all decay and recovery schemes result in a limiting path.

For example, if the decay and recovery occur in constant increments (i.e. linear) with the

values bounded below by lammin and above by lammax, the eigenvalues will approach

their respective minima if the increment is less than the decrement, and will approach

their respective maxima if the increment is greater than or equal to the decrement.

... .. .... e~ . 5 S . ' -,
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Properties of Multistable Perception

Bias

A number of investigators (Leeper 1935; Fisher 1967) have observed that most

bistable stimuli are not equally likely to be perceived in one of the two possible

configurations. There is almost always one configuration which is favored over the other.

This section examines some possible variables which might lead to this bias and how they

might be learned.

To adequately address this issue, however, a measure of bias must initially be agreed

on. To date, bias has been empirically determined by assessing (1) the probability that a

particular configuration is initially perceived, and (2) the relative duration of two or more

configurations over an extended period. These two measures are not independent of each

other, and their relationship has been demonstrated by a number of investigators (see

Vickers 1972). In this section, the initial configuration will be used as a measure of bias.

Stimulus (alpha and beta). One of the most important factors in determining bias is

the stimulus itself. As Fisher (1967) demonstrated using a sequence of figures changing

from an unambiguous "man" to an unambiguous "girl," a given ambiguous figure can be

regarded as one example from a range of stimuli gradually varying from one unambiguous

configuration to another. As Vickers (1972) has indicated, this continuum can be regarded

as a decision axis and "the probability of one percept being chosen over another should be

a sigmoidal function, resembling the general psychometric type, of the discriminability of

the stimulus elements along that dimension which is critical for the emergence of the

percept or its alternative" (p. 35). Oyama (1950) and Kuennapas (1957) have shown that

a large percentage of the responses given when the stimuli are at one extreme end of the

range correspond to the closest unambiguous configuration. While stimuli in the middle of

the range are as likely to be perceived in either of the configurations. the closer a stimulus

'%S
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is toward an end of this range, the more likely it will be perceived as the configuration

nearest to it.

In our simulations, we have chosen two Walsh vectors, (1,1.1,1.-1,-1,-1,-1) and

(1,-1,1,-1,1,-1,1,-1), as representations of the two unambiguous percepts. Since the dot

product of these two vectors is 0, they are mutually orthogonal. The set of stimuli labeled

0-18 ranges from one unambiguous stimulus (0) to the other unambiguous stimulus (18)

and lies in the plane defined by the two Walsh functions as illustrated in fig. 5 below. All

stimuli are normalized and adjacent stimuli are separated by 5 degrees.

:- ....................

insert fig. 5 about here

~....................

Kohonen (1977) remarked that "biological memories very probably operate like
.4

adaptive filters, and their primary purpose seems to be to correct random errors that occur

in sensory experiences" (p. 69). One manifestation of this compensatory property is

category formation. In forming categories, the prototype of the category can be regarded

as the average of the exemplars presented (Knapp and Anderson 1984). Such a process

emphasizes the similarities among stimuli, while deemphasizing minor perturbations.

Under the iterative scheme proposed in this paper, a set of simulations run with equal

-. initial eigenvalues showed that stimuli from one half of the range (alpha > beta) always

" ended in corner A initially, and the other half (beta > alpha) always ended in corner B.

When varying amounts of gaussian noise was added to the input, a series of sigmoidal

functions were generated. As seen in fig. 6. the greater the amount of noise, the shallower

the transition from one category to the other.

...
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. insert fig. 6 about here

Furthermore, the time taken to achieve the initial percept is related to the distance of

the stimulus from the "boundary" of the two alternatives along the continuum. Both

Shepard and Humphris (unpublished experiment cited in Vickers 1972) and Shepard

(1972) have shown that stimuli near the far extremes (unambiguous configuration) have

short latencies, and stimuli near the boundary have longer latencies. By counting the

number of iterations it takes the activity to reach a stable corner, a measure of latency can

be obtained. As illustrated in fig. 7, under the conditions of the above set of simulations

(no added noise), the number of steps to a corner increases as one approaches the

7,' boundary and is symmetric about this point.

i . ° ... .. .... .. .......

insert fig. 7 about here

• .'

• -. '. System (eigenvalues). Another consideration in determining bias is the role of

experience, in both the distant and recent past. Allport (1955) has proposed that

perceptual sets are primarily determined by past experience and that the greater the

frequency of such experiences, the stronger the set. On the other hand, Epstein and Rock

(1960) concluded that in the perception of an ambiguous figure, recency was more

important than frequency (or expectation). They argue that a distinction should be made

between total past experience and factors in the immediate situation. In this section. the

role that total past experience plays will be examined, %ith the effects of recent experience

discussed in later sections on adaptation and hysteresis.

a-.i
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If we regard the neural network as an adaptive filter, we might expect that repeated

presentations of certain stimuli during learning trials ultimately affects the response of

the filter. After learning for a while, the eigenvectors of A with large eigenvalues will tend

to correspond to commonly presented patterns, and the eigenvalue. in a more complex

system, will be an estimate of the frequency of presentation.

4' In the simulations presented here, the long-term values of lamA and lamB are

assumed to be generated by the learning scheme presented in Anderson et al. (1977). The

following results using a normalized stimulus vector demonstrate the significance of these

4. values, or more accurately, the ratio of these values in determining the boundary. The
-p.

sum of lamA and lamB was kept constant (lamA + lamB = 0.8) while their ratio was varied.

As seen in fig. 8, as the ratio of lamAlamB increases, the boundary shifts toward fB" In

essence, as the relative familiarity (eigenvaluei of a particular configuration (eigenvector.

increases, that stimulus which had been perceived in each of the two configul.. ions with

perhaps equal probability is now perceived as the more familiar configuration a greater

percentage of the time.

~........ °.............

insert fig. 8 about here

Although there may not be, to our knowledge, any studies quantitatively examining

the influence of frequency on multistable perception, there does exist a fair amount of

*, qualitative evidence showing that past experience does have an effect (Rubin 1921; Leeper

It is important to distineuish the learning phase from test phase. The long-term

eigenvalue will be allowed to change only during the learning phase. Although this
simplification is incorrect 'there is some evidence of learning during the experimentsi. it
is made here for ease in simulation and because it seems not to be a major effect.

'pM



Multistable perception 22 Kawamoto and Anderson

1935). Rubin (1921) presented ambiguous figure-ground patterns to subjects and

instructed them to see the stimulus in a certain manner. When these patterns were

presented later. subjects tended to perceive them in the manner organized previously.

In terms of the neural network model, the trace of an unambiguous pattern fi can be

regarded as the synaptic connectivities defined by fi fiT, and the strength of this trace as

lami. If the stimulus presented is somewhere along the continuum between the two

unambiguous patterns, the stimulus can be regarded as a weighted sum of these two

patterns. Since both traces are represented within the system, both will have a positive

feedback effect on states immediately following the onset of the stimulus. The initial

V percept is thus dependent on the relative bias of the stimulus and the relative values of the

eigenvalues corresponding to the two unambiguous configurations.

. Adaptation

By presenting the subject with an unambiguous version of a multistable stimulus. it is

possible to selectively adapt that particular configuration. Howard (1961) and Virsu

(1977) have examined this effect using reversible perspective figures. Under these

conditions, subjects tend to perceive the alternative configuration initially.

This property has also been simulated under the iterative scheme proposed. In the

adapting condition (results listed in table 2 of Appendix B). an unambiguous stimulus with

components of activity in only one direction (e.g. fA) is presented. After a period of time

(75 iterations), the stimulus is removed. Upon removal of the stimulus, the system decays

to its resting level and the eigenvalue lamA begins to recover. (Adaptation can also be

demonstrated if the eigenvalue is not allowed to recover.) Some time after the adapting

stimulus has been removed ,iteration #S3). a stimulus which was biased toward the now

adapted configuration is presented. To simulate this procedure. the state of the system at

that point of the adaptation simulation (table 2, is used as the initial conditions of the

- A A& & L ,. 
. .
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e' system.

, The results of simulations using the identical stimulus presented to the unadapted and

• the adapted system are given in tables 1 and 3. respectively, in Appendix B. A number of

* differences are immediately apparent. First. the initial percept is different. Since the

stimulus chosen was biased towards the fA configuration, this configuration was initially

perceived under the unadapted condition. Adapting the system with an unambiguous

stimulus corresponding to configuration A resulted in reducing only the eigenvalue

corresponding to this eigenvector. Thus, presentation of the same stimulus under the new

" conditions resulted in the alternative configuration as the initial pL.-cept. Another point to

note is that the period of time the state is in corner A (the adapted configuration) increases

rather than decreases.

Hysteresis

One observation which has been the focus of a number of models (Haken 1979; and

Stewart 1978) is the hysteresis manifested upon viewing a sequence of stimuli. Hysteresis

in multistable perception refers specifically to the differential response to a stimulus in a

sequence of stimuli varying along a continuum as a function of the order of presentation.

Actually, this property has been reported earlier under the term of perceptual set

(Wertheimer 1923) or recency (Epstein and Rock 1960).. Wertheimer describes a situation

in which an observer is first shown a pattern of dots as illustrated below

a b a b a b

By the gestalt law of proximity. .' pairs of dots are seen. with "a" the left member of the

pair (designated a-b). In successive exposures. the distance between the members of this

pair increases, decreasing the distance between members of adjacent pairs of dots. On

,.,... ... ....,".-. .... .. .. •-. ... '...-_ • •'.-.' -."" ..... '........ a .. .-. '. ' ' ,.. V,'.'
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"-C- viewing this sequence, an observer will perceive the stimulus below

a b a b a b

as a-b pairs despite the fact that the dots are equidistant from each other. Only if the

separation were increased further would the stimulus be seen as a b-a pair. Conversely, if

the stimulus configuration biased toward the b-a pair was the initial stimulus with the

sequence of stimuli presented in reverse order, the equidistant stimulus above would now

be seen as a b-a pair. Thus, the same stimulus gives rise to 2 different percepts depending

{1. on the order of presentation.

Attneave (1971) has also explored the consequences of manipulating the order of

presentation of a sequence of stimuli. Using a set ranging from the unambiguous "man"
'p.

configuration to the unambiguous "girl" configuration, Attneave found that a stimulus

biased toward one configuration (e.g. the "man") would be perceived as the other

configuration (i.e. the "girl") if the sequence began with the unambiguous "girl"

configuration.

Simulation of this property of multistable perception is similar to the procedure used

in demonstrating adaptation. In both cases, the initial conditions of the state (x(O)) and the

system (A(O)) are influenced by the recent history. However, for adaptation, the duration

of the stimulus presentation is much longer than for hysteresis.

First of all, recall that each stable state is an eigenvector of the feedback matrix and

that the eigenvectors form a basis set. If the input stimulus, Xstim, is removed after the

system is in a stable state. there will be no component of activity in any direction other

than the stable corner. Thus. subsequent states will be confined to changes in the

magnitude of the activity vector, with the direction remaining constant. If the long-term

eigenvalue associated with the eigenvector is less than 1-sigma, the magnitude of the
,
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activity vector will nev'er be greater than one upon removal of the stimulus3

C + ) t~)
<SA

Thus. a stable state can no longer be attained and one would expect that the system would

eventually return to its resting level.

If. however, the stimulus is presented briefly, the eigen values will not decay very

much. Now, the activity of the system has a component of activity in the direction of the

previous configuration at the onset of the next stimulus presentation. This component

may be sufficiently large to offset both the bias in the stimulus and the bias created by a

.a. decrease in the eigenvalue associated with the previous configuration. A sequence

simulating hysteresis in presented in Appendix C.

Dynamics

Perhaps more dramatic than the fact that a stimulus can be perceived in two or more

configurations is the rapid (seemingly instantaneous.) transition from one percept to

another. To the extent that the ratio of stable state duration to transition state duration is

large, the transition can be regarded as instantaneous. In these simulations, this ratio is

sometimes as large as ten to one. An interesting model for operation of a neural system

would be a movement of the state vector from stable state to stable state with abrupt

transitions between them. This would be a way of discretizing or segmenting a continuous

stream of sensory inputs in a way determined by the learning which took place in the past

of the system. Presumably. significant states would be maintained for a while. perhaps

even beyond their actual duration in the stimulus. so they could drive events and analysis

in later parts of the nervous system.

Va%
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In a dynamic system. the time course of the states the system is in is of particular

interest. The iterative scheme described above generates such a plot for the multistable

A perceptual process. Empirical results (Brown 1955; Cohen 1959.) indicate that the time

course is marked by a monotonic increase in the rate of reversals during the presentation

of the stimulus. The slope of the function (i.e. the rate at which the reversal rate

increases) gradually decreases to zero as it reaches an asymptotic level about 3 minutes

from stimulus onset.

This property can also be shown by plotting the durations of each phase. As Price

(1967) has shown, the mean duration of the initial percept (P1) decreases markedly from

its initial duration. with no further decrease in subsequent phases. The mean duration of

the reversal phase (P2) is constant through the first 10 cycles of reversals. It was also

noted that the asymptotic mean duration of P1 was approximately equal to the constant

I mean duration of P2.

Our simulations show similar qualitative behavior as illustrated in fig. 9. The

duration of the initial percept is longer than the duration of subsequent percepts.

Furthermore, the durations corresponding to each of the two possible configurations

decrease until an asymptotic level is reached. This is predicted from the existence of

eigenvalue minima described in Appendix A.

insert fig. 9 about here

As previously noted. the "average of the times during which a particular percept is

seen is a direct function of the probability that that percept will occur first" (Vickers

1972). As seen in fig. 10. the duration of the initial percept is a function of the ambiguity
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of the stimulus. The more biased a stimulus is toward a particular unambiguous

configuration. the longer the initial duration. This plot is qualitative],% similar to results of

Oyama (1950' and Kuennapas (1957;) which are empirical results showing the probability

of initial perception.

. . . . . . .... . .

insert fig. 10 about here
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Discussion

*o The brain-state-in-a-box model is a neural network based on modifications at the

synaptic level. Although such neurophysiological parameters as synaptic strength are not

easily accessible, it is possible that behavior shown by human observers as a result of

events at the synaptic level are observable.

In this paper, we have attempted to extend the range of this model by demonstrating

that the major properties of multistable perception can be modelled with only a few

additional assumptions. We have shown that the configuration initially perceived is a

function of both the stimulus and the initial condition of the system. Furthermore. the

model can simulate the empirical observation that stimuli very similar to an unambiguous

r. configuration are perceived shortly after stimulus onset whereas stimuli which are more

ambiguous require a longer interval. We have also demonstrated that adaptation and

hysteresis depend on the recent history of the system by examining the effects of the

initial conditions. In addition, we have modelled a number of the dynamic properties of

multistable perception.

4- It is interesting to note that a number of investigators writing about language

comprehension (Foss and Hakes 1978; Miller 1981) have proposed that ambiguous

sentences are analogous to multistable stimuli. Ambiguities can be due to a word having

different meanings as in "Tommy found a bat in the attic" (lexical ambiguity), a sentence

associated with two different surface structures as in "They are broiling hens" (surface

structure ambiguity), or a sentence associated with two different underlying structures as

in "The chicken is ready to eat" (underlying structure ambiguity).

As an example of how the model could be extended to this domain, let us consider the

problem of lexical ambiguity. Ambiguous words have either the same spelling

4'
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(homographs). the same pronunciation (homophones). or both the same spelling and the

same pronunciation (homonyms). Given only the spelling of a homograph or the

a.. pronunciation of a homophone, only one meaning is eventually accessed. however. Which

a.. meaning is accessed is a function of both context and frequency (Simpson 1981).

Using the framework developed here, we can begin to see how the model might

account for these findings. A word can be represented as a high-dimensional vector

composed of concatenated subvectors representing the graphemic. phonemic, syntactic, and

semantic fields of a lexical entry. Therefore, homographs would have identical graphemic

fields, homophones identical phonemic fields, and homonyms identical graphemic and

* phonemic fields. Because a pair of homographs (homophones. homonyms)i can have

different syntactic and semantic fields. each would be represented as distinct corners. To

a..-,simulate relative frequency of usage, each word in the lexicon is presented at a given

frequency during the learning phase.

After the system has been taught using a number of learning trials, test stimuli are

-~ presented. These test stimuli would consist of just the graphemic or the phonemic field of

previously learned homographs and homophones. respectively. According to the

conventions presented in this study, an unbiased stimulus has components of activity (of

the appropriate sign) only along those dimensions which are common to both corners. and

no activity along those dimensions in which they differ. Thus, this set of test stimuli can

be regarded as unbiased stimuli and we would expect that which meaning gets accessed

would be determined by which homograph (homophone) is presented more frequently.

However, just as the components of both alternative configurations of an ambiguous

'a stimulus increase until the activity of the system reaches a wall. we would expect both

meanings of a homograph pair to be activated initially as demonstrated by Swinnev

(1982t.
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On the other hand, if the stimuli are equally familiar, the bias provided by those

dimensions along which they differ in the two configurations should be sufficient to bias the

percept. This bias could be provided by the context of the word and could be implemented

as partial activity in the semantic or syntactic fields. Indeed, Swinney (1982) has

demonstrated that semantic and syntactic cues do disambiguate homographs.

Moreover, we have shown that a bias created by differential familiarity can be offset

by the bias created by different contexts. As Simpson (1981) has shown, which meaning

is accessed is a function of both frequency and context. Thus, we believe that the

approach taken here to study multistable perception can easily be extended to other

domains such as comprehension of ambiguous words and sentences.

'°.

:p.'.

".4°

- °°-°

-

' -p - "v . "-.,. '''"' - ' " .-, - ".-"""""' . - ' ' ."- .- '- "" - "' -'- -•-- -" ".i... -ii .:" 2"- ,"-:



S W- .

Multistable perception 31 Kawamoto and Anderson

Financial support for some of this work was provided by a grant from

the National Science Foundation to J. A., administered by the Memory

*. and Cognitive Processes section (Grant BNS-82-14728) and by the

United States Office of Naval Research (Contract N00014-81-K-0136) to

*... the Center for Neural Science, Brown University. We would like to

thank the Center for Cognitive Sciences, Brown University, for computing

facilities used in our simulations. We would also like to thank Steve.1•

Lehmkuhle and Bill Warren for commenting on an earlier draft of this

manuscript.

.5.

.



Multistable perception 32 Kawamoto and Anderson

References

Allport. F.H.. 1955. Theories of perception and the concept of structure. New York:
Wiley.

Anderson. J.A., 1968. A memory storage model utilizing spatial correlation functions.
Kybernetik 5, 113-119.

Anderson. J.A.. 1973. A theory for the recognition of items from short memorized lists.
Psychological Review 80, 417-438.

Anderson, J.A.. J.W. Silverstein, S.A. Ritz. and R.S. Jones. 1977. Distinctive features,
categorical perception, and probability learning: Some applications of a neural
model. Psychological Review 84, 413-451.

Anderson, J.A., in press. Neural models for cognition. I.E.E.E.: System, Man, and
Cybernetics.

Attneave, F., 1971. Multistability in perception. Scientific American 225, 62-71.

Brown. K.T.. 1955. Rate of apparent change in a dynamic ambiguous figure as a function
of observation time. American Journal of Psychology 68, 358-371.

Cohen, L., 1959. Rate of apparent change of a Necker cube as a function of prior
stimulation. American Journal of Psychology 72, 327-344.

Cooper. L., 1974. 'A possible organization of animal memory and learning'. In: B.
Lundquist & S. Lundquist (eds.), Proceedings of the Nobel Symposium on Collective
Properties of Physical Systems. New York: Academic Press.

4 dJ

Epstein, W., and I. Rock. 1960. Perceptual set as an artifact of recency. American
*Journal of Psychology 73, 214-228.

Fisher, G.H., 1967. Measuring ambiguity. American Journal of Psychology 80, 541-547.

Foss. D.J. and D.T. Hakes, 1978. Psycholinguistics. Englewood Cliffs. New Jersey:
Prentice-Hall, Inc.

Haken, H., 1979. 'Pattern formation and pattern recognition - An attempt at synthesis'.
In: H. Haken (ed.), Pattern formation by dynamic systems and pattern recognition:
Proceedings of the International Symposium on Synergetics at Schloss Elmau,
Bavaria. New York: Springer Verlag.

Howard, I.P., 1961. An investigation of a satiation process in the reversible perspective of
revolving skeletal shapes. Quarterly Journal of Experimental Psychology 13, 19-33.

Julesz. B., 1971. Foundations of cyclopean perception. Chicago: University of Chicago
Press.

Knapp. A.G. and J.A. Anderson. submitted for publication. A theory of categorization
based on distributed memory storage. Journal of Experimental Psychology: Human
Perception and Performance.

Koehler. W., 1940. Dynamics in Psychology. Liveright Publishing Corp..

V..

%'*

•. ,6



Multistable perception 33 Kawamoto and Anderson

Koehler. W. and H. Wallach. 1944. Figural after-effects: An investigation of visual
processes. Proceedings of the American Philosophical Society 88. 269-357.

Kohonen. T.. 1977. Associative Memory: A System Theoretic Approach. Berlin:
Springer-Verlag.

Kuennapas. T.M.. 1957. Experiments on figural dominance. Journal of Experimental
Psychology 53. 31-39.

Leeper, R.W.. 1935. A study of a neglected portion of the field of learning - The
development of sensory organization. Journal of Genetic Psychology 46, 41-75.

McDougall, W., 1904. Physiological factors of the attention process: IV. Mind 15,

329-359.

Miller, G.A., 1981. Language and Speech. San Francisco: W. H. Freeman.

Necker. L.A.. 1S32. Observations on some remarkable phenomena seen in Switzerland;and an optical phenomenon which occurs on viewing of a crystal or geometrical solid.

Philosophical Magazine, 3 ser. 1. 329-343.

Orbach. J.. D. Ehrlich. and H.A. Heath, 1963. Reversibility of the Necker cube: I. Anexamination of the concept of "satiation of orientation." Perceptual and Motor Skills

17, 439-458.

Oyama, T., 1950. Figure-ground dominance as a function of sector angle, brightness, hue.
and orientation. Journal of Experimental Psychology 60, 299-305.

Poston, T. and I. Stewart, 1978. Nonlinear modeling of multistable perception. BehavioralScience 23, 318-334.

Price, J.R., 1967a. Two components of reversal for a rotating skeletal cube: "Conditioned
satiation." Australian Journal of Psychology 19, 261-270.

Price. J.R., 1967b. Perspective duration of a plane reversible figure. Psychonomic Science
* 9, 623-624.

Price, J.R.. 1969. Studies of reversible perspective: A methodological review. Behaviour
Research Methods and Instrumentation 1, 102-106.

Pritchard. R.M.., W. Heron, and D.O. Hebb. 1960. Visual perception approached by the
method of stabilized images. Canadian Journal of Psychology 14, 67-77.

Riggs, L.A., F. Ratliff. J.C. Cornsweet, and T.N. Cornsweet. 1953. The disappearance of
steadily fixated visual test objects. Journal of the Optical Society of America 43,
495-501.

Rubin. E., 1921. Visuel] wahrgenommene Figuren. Copenhagen: Glydendalske.

Sadler. T.G. and R.B. Mefferd. Jr.. 1970. Fluctuations of perceptual organization and
orientation: Stochastic irandomi or steady state ;satiation)? Perceptual and Motor

a Skills 31, 739-749.

a°

, , , ~~....................,,.... #. . -...............-.-...........-......-....... ,,......,-,.,-,-.-,



Multistable perception 34 Kawamoto and Anderson

Selfridge, O.G.. 1959. Pandemonium: A paradigm for learning. In: The mechanisation
of thought processes. London: H. M. Stationery Office.

Shepard. M.. 1972. 'Decision processed in perceptual organization: effects of proximity
and regularity on response frequency and latency'. In: F. F. O'Callaghan (ed.).
Pictorial Organization and Shape, Division of Computing Research, C.S.I.R.O.
Canberra, A.C.T..

Simpson. G.B., 1981. Meaning dominance and semantic context in the processing of
lexical ambiguity. Journal of Verbal Learning and Behavior 20. 120-136.

Spitz, H.H., 1963. Some experiments with a stationary and revolving three-dimensional
skeletal cube. Paper presented at the meeting of the Eastern Psychological
Association, New York City, April, 1963.

Swinney, D.A., 1982. 'The structure and time-course of information interaction during
speech comprehension: lexical segmentation, access, and interpretation'. In: J.
Mehler, E.C.T. Walker. and M. Garrett (eds.). Perspectives on Mental
Representation: Experimental and Theoretical Studies of Cognitive Processes and
Capacities. Hillsdale, NJ: Erlbaum.

Taylor, M.M. and K.D. Aldridge. 1974. Stochastic processes in reversing figure
perception. Perception and Psychophysics 16, 9-27.

Vickers. D., 1972. A cyclic decision model of perceptual alternation. Perception 1, 31-48.

Virsu. V., 1975. Determination of perspective reversals. Science 257, 736-737.

Wertheimer, M., 1923. Untersuchengen zur Lehre von der Gestalt: II. Psycholgische
Forschung 4, 301-350.

,..°

4 - - .



Multistable perception 35 Kawamoto and Anderson

Appendix A

Consider the situation where the state of the system is fA. That is.

According to the iterative scheme, the next state. xt- 1). is
.~

% Note that once the state vector is in a corner, the subsequent state is independent of all

other eigenvalues. In particular, it is independent of lamB.

Even after restricting the activity of the state vector to within the boundaries of the

hypercube, the subsequent state may again be fA. Thus. lamA will be decremented

according to the above scheme. This cycle, however, cannot continue indefinitely. At some

point, the component of fA will be less than 1. Since alpha and sigma are constants, the

value of lamA will not decrease below a certain a value,

The minimum value of an eigenvalue will probably be larger than the value indicated

above. This can easily be seen by examining the 2-dimensional system illustrated in fig.

11. The activity of cell 1 is plotted on the x-axis and the activity of cell 2 is plotted on the

y-axis. The two eigenvectors of A are fA" (-1.1). and fB" (1.1) and these two orthogonal

vectors point to two corners of the box. Due to the constraint on the maximum firing rate

* '*.. . . .. . ° ° . . . - . 4 - . .- ". - . .- . . .



*..-

.. 7%

Multistable perception 36 Kawamoto and Anderson

of a cell, a state vector extending into either of the regions, (x ! -1, y a 1) and (x _ 1, y

a 1), will be in a corner. If the state vector is outside the shaded regions, the state will

not be in a corner. Thus, the minimum values of lamA and lamB. designated lamAmn

g-"'. and lamB r in , respectively, are

mN
'. 1-",7

.- ---

Although the existence of minima has not yet been formally established for the high

dimensional space, our simulations do indicate that such minima do exist.

insert fig. 11 about here

..
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Appendix B

*The following tables are segments of actual simulations with the columns representing

..., the following values:

1 iteration number

2 number of iterations state vector is in corner A

3 number of iterations state vector is in corner B

4 current value of lamA

5 current value of lamB

6-13 x(1)....x(8), the state of the system

In these simulations. sigma is equal to 0.5, the decay and recovery constants are 0.05 and

0.015, respectively, and lamA x and lamB m ax are 0.8 and 0.4, respectively. In the

unadapted condition, the initial values of lamA and lamB are their respective maximum

values and the initial activity is the zero vector. As seen in table 1, presentation of

stimulus 13 leads to configuration A as the initial percept in the unadapted conditions. To

simulate adaptation, an unambiguous stimulus (stimulus 0) is presented to the system and

the subsequent activity is shown in table 2. After 75 iterations, the stimulus is removed.

* The eigenvalue. lamA begins to recover and the system decays to its resting level of

activity. Eight iterations from the offset of stimulus 0, a stimulus (stimulus 13) which had

been initially perceived as configuration A in the unadapted condition is presented to the

system following adaptation. The initial value of lamA and the activity of the system are

obtained from iteration 83 in table 2. Under these conditions, the initial percept is

configuration B.

°...
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table 1: stimulus 13 in unadapted condition

it# A e lamA lamb x(i) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

0 0 0 0.80 0.40 0.0 0.0 0.0 0.0 0.0 C.C 0.0 C.C
1 0 0 0.80 0.40 0.5 -0.2 0.5 -0.2 0.2 -0.5 0.2 -0.5
2 0 0 0.80 0.40 1.0 -0.3 1.0 -0.3 0.3 -1.C 0.3 -1.0
3 0 0 0.80 0.40 1.0 -0.3 1.0 -0.3 0.3 -1.0 0.3 -1.0
4 0 0 0.80 0.40 1.0 -0.1 1.0 -0.1 0.1 -1.0 0.1 -1.0
5 0 0 0.80 0.40 1.0 0.7 1.0 0.7 -0.7 -1.C -0.7 -1.0
6 0 0 0.80 0.40 1.0 1.0 1.0 1.0 -1.0 -1.C -1.0 -1.0
7 1 0 0.76 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
8 2 0 0.72 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
9 3 0 0.69 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0

10 4 0 0.65 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0

4
q

.%

-..

".-.

-4

".

L-



table 2: adapting with stimulus 0

it# A B lamA lamb x(l) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

0 0 0 0.80 C.40 0.0 0.0 0.0 C.0 0.0 0.0 0.0 0.0

1 0 0 0.80 0.40 0.4 0.4 0.4 0.4 -0.4 -0.4 -0.4 -0.4
2 0 0 0.80 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
3 1 0 0.76 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0

4 2 0 0.72 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0

5 3 0 0.69 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
a -a - a

73 71 0 0.02 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.C
74 72 0 0.02 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
75 73 0 0.02 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
76 74 0 0.02 0.40 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
77 74 0 0.03 0.40 0.6 0.6 0.6 0.6 -0.6 -0.6 -0.6 -0.6
78 74 0 0.04 0.40 0.4 0.4 0.4 0.4 -0.4 -0.4 -0.4 -0.4
79 74 0 0.05 0.40 0.3 0.3 0.3 0.3 -0.3 -0.3 -0.3 -0.3
80 74 0 0.06 0.40 0.2 0.2 0.2 0.2 -0.2 -0.2 -0.2 -0.2
81 74 0 0.07 0.40 0.1 0.1 0.1 C.1 -0.1 -0.1 -0.1 -0.1
82 74 0 0.09 0.40 0.1 0.1 0.1 C.1 -C.1 -0.1 -0.1 -0.1
83 74 0 0.10 0.40 0.1 0.0 0.1 0.0 0.0 -0.1 0.0 -0.1
84 74 0 0.11 0.40 0.1 0.0 0.1 0.0 0.0 -0.1 0.0 -0.1

.1
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table 3: stimulus 13 in adapted condition

it# A B lamA lamB x(l) x(2) x(3) x(4) x(5) x(6) x(7) x(8)

0 0 0 0.10 0.40 0.1 0.0 0.1 0.0 0.0 -0.1 0.0 -C.1
1 0 0 0.10 0.40 0.5 -0.1 0.5 -0.1 0.1 -0.5 0.1 -0.5
2 0 0 0.10 0.40 1.0 -1.0 l.0 -1.0 1.0 -1.0 1.0 -1.0
3 0 1 0.11 0.38 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0
4 0 2 0.12 0.36 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0
5 0 3 0.13 0.34 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.C -1.0
6 0 4 0.14 0.33 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0
7 0 5 0.15 0.31 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0
8 0 6 0.16 0.29 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0
9 0 7 0.17 0.28 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0

10 0 8 0.18 0.27 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0
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• : Appendix C

The following table is composed of a series of simulations using a sequence of stimuli

varying from an unambiguous stimulus to one biased toward the alternative configuration.

The stimulus is removed after 3 iterations, and the values of x. lamA. and lamB at that

point are used as the initial values on the subsequent trial. The first stimulus is stimulus

$ 0, followed by stimulus 1 through stimulus 13. The initial values of lamA and lamB are

both 0.5. As the simulations show, stimuli biased toward configuration B are perceived as

configuration A if the set of stimuli are presented in the above order.

.V.
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table 4: Simulation of hysteress

Itim it# A B |lmA |lm x(I) x(2l x13) x14) 05) xl6) x(71 x(8o

0: 0 0 0 a.So 0.50 0.0 0.0 0.0 0.C C.0 0.0 C.0 0.C
I a 0 0.50 0.50 0.1 0.4 0.4 0.4 -C.4 -0.4 -0.4 -C.4
2 0 0 0.50 0.50 1.0 1.0 1.0 1.0 -1.0 -1.C -1.C -2.0
3 I 0 0.47 0.50 1.0 2.0 1.0 1.0 -1.0 -1.0 -1.0 -I.C

* 1: 0 0 0 0.47 0.50 1.0 1.0 1.0 1.C -1.0 -I.C -I.C -I.0
I I 0 0.45 0.50 1.0 1.0 1.0 1.0 -1.0 - .C -1.C -1.0

A 2 2 0 0.43 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -I.C
3 3 0 0.41 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -I.C

2: 0 0 0 0.41 0.50 1.0 1.0 1.0 1.0 -1.0 -I.0 -1.0 -1.0
I 1 0 0.39 0.50 1.0 2.0 1.0 1.0 -I.C -I.C -I.C -1.0
2 2 0 0.37 0.50 1.0 1.0 1.0 1.0 -I.0 -I.0 -2.0 -I.03 3 0 0.35 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -I.0

3: 0 0 0 0.35 0.50 1.0 1.0 1.0 1.0 -1.0 -I.0
I 1 0 0.33 0.50 1.0 1.0 1.0 1.0 -1.0 -1 0 -1.0 -1.0
2 2 0 0.32 0.50 1.C 1.0 t.0 1.0 -1.0 -1.' -1.0 -i.C
3 3 0 0.30 0.50 1.0 I.C 1.0 1.0 -1.0 -1.C -1.0 -1.0

4: 0 0 0 0.30 0.50 1.0 1.0 1.0 1.0 -1.0 -I.0 -1.0 -I.0
I 1 0 0.28 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -i.C
2 2 0 0.27 0.50 1.0 1.0 1.0 I.C -I.0 -1.C -1.0 -1.C
3 3 0 0.26 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0

5: 0 0 0 0.26 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
I 1 0 0.24 0.50 1.0 1.0 1.0 I.0 -1.0 -1.0 -I.0 -1.0
2 2 0 0.23 0.50 1.0 1.0 1.0 1.0 -1.C -1.0 -1.0 -1.0
3 3 0 0.22 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0

6: 0 0 0 0.22 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
I 1 0 0.21 0.5C 1.0 1.0 1.0 1.C -1.0 -1.C -1.0 -1.0
2 2 0 C.2 0.5 1.0 1. I.C 1.0 -1.0 -1.0 -1.C -1.C
3 3 0 0.19 0.50 1.0 1.C 1.0 1.0 -1.0 -1.0 -1.0 -I.0

7: 0 0 0 0.19 0.50 1.0 1.0 1.0 1.0 -I.c -2.0 -2.0 -2.C
I I c 0.18 C.50 1.0 I0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
2 2 0 0.17 0.50 1.0 1.0 1.0 1.C -1.0 -1.0 -1.0 -1.0
3 3 0 0.16 0.50 1.0 1.0 2.0 1.C -1.0 -1.0 -1.0 -1.0

6: 0 0 0 0.16 0.50 2.0 1.0 1.0 1.0 .1.0 .1.0 -1.0 -1.0
I 1 0 0.15 0.50 1.0 1.C 1.0 1.0 -1.0 -1.0 -1.0 -1.0
2 2 0 0.15 0.50 1.0 1.0 2.0 1.0 -1.0 -2.0 -1.0 -1.0
3 3 0 0.14 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0

9: 0 0 0 0.14 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -I.0 -1.0
1 1 0 0.13 0.50 2.0 1.0 2.0 1.0 -1.0 -1.0 -1.0 -1.0
2 2 0 0.13 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -1.0
3 3 0 0.12 0.50 1.0 2.0 1.0 2.0 -1.0 -1.0 -1.0 -1.0

10: C 0 0 0.12 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -1.0 -t.0
I 1 0 0.22 0.50 2.C 1.0 1.0 1.0 -1.0 -1.0 -1.0 -I.0
2 2 0 0.22 0.50 1.0 1.0 1.0 2.0 -2.C -1.0 -1.0 -1.0
3 3 0 0.10 0.50 1.0 1.0 1.0 1.0 -1.0 -1.0 -2.0 -1.0

fl: 0 0 0 0.20 0.50 1.0 1.0 2.0 2.0 2.0 1.C -I.C -1.0
I 1 0 0.10 0.50 2.0 1.0 1.0 1.0 -2.0 -I.c -2.0 -2.0
2 2 0 0.09 0.50 1.0 1.0 1.0 1.0 -1.0 -1.C -1.0 -I.C
3 3 0 0.09 0.50 2.0 1.0 2.0 1.0 -1.0 -2.C -1.0 -1.0

12: 0 0 0 0.08 0.50 1.0 1.0 2.0 1.0 -1.0 -1.0 -1.0 -2.0
I 1 0 0.08 0.50 1.0 1.0 1.0 1.0 .1.0 .1.0 -1.0 -2.0
2 2 0 0.07 0.50 1.0 1.0 1.0 1.0 -2.0 -1.0 -1.0 -i.0
3 2 0 0.07 0.50 1.0 0.9 2.0 0.9 -0.9 -1.0 -0.9 -1.0

13: 0 0 0 0.07 0.50 1.0 0.6 1.0 0.6 -0.6 -1.0 -0.6 -1.C
1 0 0 0.07 0.50 t.0 -0.2 1.0 -0.1 0.2 -i.C 0.1 -2.0
2 0 0 0.07 0.50 1.0 -1.0 1.0 -1.0 1.0 -2.C 1.0 -I.0
3 0 1 0.08 0.47 1.0 -2.0 1.0 -1.0 1.0 -I.C I.C -1.0
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Figure captions

figure 1. A neural network connecting two sets of neurons. alpha and beta, with the

set of synaptic connectivities defined as the matrix A (from Anderson et al.

1977).

figure 2. A neural network feeding back onto itself (from Anderson et al. 1977).

figure 3. Time course of the decay and recovery of eigenvalues lamA and lamB.

figure 4. (a) Plot of lamA and lamB as they are allowed to decay to their respective

minima and allowed to recover, (b) The recovery phases are reflected about

the vertical lines through the minimum values of lamA and lamB. The

reflected plot of lamB is translated horizontally so both minima are

vertically aligned. (c) The initiation value of lamA is determined by the

vertical line through the recovery curve of lamB with the decay curve of

lamA. The value of lamB is found similarly. A graphic demonstration of

the asymptotic nature of the initiation values is given by plotting the

horizontal and vertical connecting line segments.

figure 5. The set of stimuli used ranges from one unambiguous stimulus (stimulus

0) to the second unambiguous stimulus (stimulus 18). Adjacent stimuli are

separated by 5 degrees and all stimuli are normalized.

, figure 6. Percentage of initial percept as a function of the stimulus. Each point

represents 100 trials with different amounts of gaussian distributed noise

added to each dimension off the stimulus vector.

figure 7. Simulation of the time required for perception of the initial configuration.

Stimuli similar to unambiguous configurations are perceived shortly after

.5the onset of the stimulus, and stimuli near the boundary require longer

.ox
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% periods of time.

figure 8. Effect of varying the ratio of the initial eigenvalues on the boundary

between configurations.

figure 9. The time course of multistable perception. Simulation under dynamic decay

and recovery of the eigenvalues.

figure 10. Simulation of the duration of the initial percept as a function of the particular

stimulus.

.4

figure 11. A 2-dimensional system with the response of cell 1 plotted on the horizontal

axis, and the response of cell 2 plotted on the vertical axis. The firing rate

of both cells is bounded below by -1 and above by 1. If a state is in the

corner, the subsequent state will also be in a corner if the output, prior to

the constraint on the firing rate, is in the shaded region.
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